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Abstract

A new hybrid joint probability density function (JPDF) solution algorithm for turbulent flows in complex 3D geome-
tries is presented. The main focus is to demonstrate the applicability of JPDF methods for complex flows as observed in
industrial applications. All elements of the algorithm are explained in detail and extensive validation studies are presented.
A multiblock finite-volume solver, capable of handling globally unstructured, locally structured grids, was implemented
together with a Lagrangian particle method. Efficient and robust particle management and accurate schemes for estimation
and interpolation of particle statistics have been developed. For numerical efficiency particle sub-time stepping and an
implicit finite-volume solver are applied. A fast coupling strategy was developed together with a multigrid method that
allows very fast convergence on refined grids. Comparison with an established JPDF code for a bluff-body stabilized flow
shows very good agreement. Furthermore, robustness and consistency of the algorithm for turbulent flow simulations with
complex geometry is demonstrated.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Accurate simulations of chemical reactions in complex turbulent environments are crucial for many stud-
ies of engineering applications. In addition to reliable turbulence models, major challenges include general
descriptions of turbulence-reaction interaction and mixing. Compared with traditional turbulence models
[1-3], which are based on Reynolds averaging techniques and yield modeled equations for statistical
moments, joint velocity-composition probability density function (JPDF) methods have the crucial advan-
tage that turbulence-reaction interaction and turbulent convection (which includes turbulent dispersion of
scalars) appear in closed form. Molecular mixing, dissipation and redistribution of turbulent kinetic energy
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on the other hand require modeling, which is an active research area. An overview of theory and modeling
of turbulent flow is given in [4] and a comprehensive review of modeling aspects with respect to reacting
flows is presented in [5].

In terms of better models for probability density function methods (PDF) significant progress has been
made during the past decades. For example, more advanced joint velocity-frequency-composition PDF meth-
ods, which also provide a model for the turbulent time scale [6,7], were adopted and sophisticated modeling
techniques developed for second-moment closures [8—11] were incorporated. Relevant for turbulent combus-
tion simulations are recent improvements for efficient computation of complex reaction chemistry [12] and bet-
ter molecular mixing models. Due to these improvements, PDF methods could be successfully applied for
many inert [13-16] and reactive flow studies [17-24]. To solve modeled PDF transport equations typically
Monte Carlo methods, i.e. stand-alone particle-mesh methods, are employed. This is due to the high dimen-
sional space in which the PDF evolves [25-27]. In such particle methods each particle represents a realization
of the flow at its position and their evolution is described by stochastic differential equations. These equations
are constructed such that the particle number density can be interpreted as the probability density in sample
space, provided enough particles are employed. However, the large number of particles which is required for
robust and accurate simulations makes stand-alone particle-mesh methods relatively expensive. Therefore,
despite their intrinsic modeling advantages, PDF methods are not widely used in industry. Motivated by this
deficiency a consistent particle-finite-volume hybrid algorithm to solve the JPDF transport equation for tur-
bulent reactive flows was developed [28,29]. The algorithm is a combination of a finite-volume scheme and a
particle method, where the finite-volume scheme is used to solve the Reynolds averaged Navier—Stokes
(RANS) equations and the particle method to compute the JPDF transport equation. This allows to use a
much smoother mean (Favre averaged) velocity field, which is computed by the finite-volume scheme, in
the particle method. Vice versa, the turbulent fluxes and the mean reaction term are extracted from the particle
field and can be used to close the RANS equations. It could be demonstrated that results computed with this
hybrid method contain much less bias and statistical errors than solutions obtained with stand-alone particle-
mesh methods (for the same number of particles). This allows to perform simulations with much less particles
and results in a significant improvement of the computational efficiency [13]. For the application of JPDF
methods for complex, large problems, e.g. in industry, this is very promising. However, that hybrid algorithm
was developed for orthogonal 2D (plane or axi-symmetric) grids only and cannot deal with the geometrical
complexities typical for practical problems.

In this paper, we present a new hybrid algorithm for complex 3D geometries based on locally struc-
tured, globally unstructured multiblock grids [30,31]. Compared with fully unstructured grids, such grids
have numerous algorithmic advantages and can still honor very complex 3D geometries. The basic concept
of our JPDF method is based on the ideas of the consistent hybrid method for orthogonal 2D grids, but
to accommodate for the much more general grids it was necessary to address and resolve various addi-
tional algorithmic issues, most of them related to an efficient particle management in general hexahedron
multiblock topologies. We also present a number of schemes, which we developed to further enhance the
overall efficiency, e.g. particle sub-time stepping for multiblock topologies, a multigrid algorithm for solu-
tions on very fine grids, and an algebraic proxy turbulence model for a good initial solution of the flow
field. The implementation of the multiblock JPDF algorithm is based on our Lagrangian—Eulerian multi-
block simulation kit (LEMBSK), which was designed as a general platform for the quick implementation
of coupled particle/finite-volume methods. Compared to previous work on PDF methods for more com-
plex geometries [32-35] the present algorithm has the advantage that it consistently solves for the joint
fluctuating-velocity-frequency-composition PDF and is explicitly designed for arbitrary non-orthogonal
multiblock grids. The new JPDF solver was first validated for a bluff-body test case with simple geometry.
It is shown that the results are in excellent agreement with those of the established 2D hybrid method.
The capability to deal with complex geometries was demonstrated with simulations of turbulent flow in
a generic combustion chamber. It is shown that the level of internal consistency which can be achieved
numerically is good.

The layout of the paper is as follows. First, we describe the governing equations in Section 2. Then, all
details of the solution algorithm are described in Section 3 and in Section 4, a careful validation is presented.
Finally, conclusions are given in Section 5.
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2. Hybrid JPDF method

In this section, we describe the governing equations for the JPDF method. In the framework of the hybrid
algorithm described here, a transport equation for the joint PDF of fluctuating velocity and composition is
solved (Section 2.1). Since this JPDF contains no information about the mean velocity, the Reynolds-averaged
Navier—Stokes (RANS) equations are solved simultaneously (Section 2.2).

2.1. JPDF transport equation

The dependent variable in the JPDF transport equation is the mass density function (MDF)
Y = (p)(x,1)g(v,C;x,t), which is the product of the mean fluid density, {p), and the mass weighted JPDF,
g, of the fluctuating velocity and composition at each location, x, and time, 7. The vectors v and C are the
sample space variables of the fluctuating velocity, u, and composition, ¢, respectively. The transport equation

for ¥ reads
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where U = U — u is the Favre-averaged fluid velocity. Favre-averaged quantities are denoted by -, Reynolds-
averaged quantities by (.) and {.|.) are conditional expectations. The second, third and fourth terms on the left-
hand side denote transport in physical, velocity and composition space, respectively. The substantial
derivatives
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are derived from the Navier—Stokes equations, where S, denotes the chemical source term and J* is the dif-
fusive flux of composition o. With Egs. (1)—(3), the transport equation for % becomes
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Note that the terms on the left-hand side appear in closed form. A particular advantage of PDF methods is
that the chemical source term and turbulent convection do not have to be modeled. However, models are re-
quired to close the terms on the right-hand side, i.e. to account for the effects of the fluctuating viscous stress
tensor, 1/p0t;/0x; — 1/{p)d(t;/0x;, fluctuating pressure gradient, 1/p0p/dx; — 1/{p)0(p)/0x;, and diffusive
fluxes, J*. For simplicity, but without loss of generality, the algorithmic issues addressed in this paper are dis-
cussed without considering reactions or compositions. The simplified Langevin model (SLM) [4] is employed
to close Eq. (4), which results in the modeled transport equation
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where Q is the conditional turbulence frequency, k = wu; /2 the turbulent kinetic energy, and Cy and C, are
model constants given in Table 1. Eq. (5) is a Fokker-Planck equation and can be solved using a Lagrangian
particle method (PM) (see Section 3.2.1).
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Table 1

Constants used in the JPDF models

Constant Suggested value Used in

Co 2.1 SLM

Co 0.6893 Definition of omega

Co1 0.65 Turbulence frequency model
Cuo 0.9 Turbulence frequency model
Cs 1.0 Turbulence frequency model
Cy 0.25 Turbulence frequency model

2.2. RANS equations

To close Eq. (4), the Favre-averaged velocity, U;, has to be known. Therefore, in the hybrid approach under
consideration, the RANS equations, i.e.

0 0
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are solved, where E, is the Favre-averaged total energy per unit volume. Note that the molecular fluxes are
neglected, which is justified for high Reynolds numbers. The terms on the right-hand side of Eq. (6) can be
computed from the JPDF g and, therefore, Eqgs. (5) and (6) combined provide a closed system, which is
the basis for the hybrid algorithm. There, the RANS equations (6) are solved with a finite-volume method
(FVM), while a particle method is used to solve Eq. (5).

3. Solution algorithm

The basis of the new 3D multiblock algorithm is a coupled Lagrangian/Eulerian simulation platform. It
consists of a grid based finite-volume method and a particle method. Whereas the FVM is more or less stan-
dard, most of the algorithmic details are centered around the PM. A flow chart of the algorithm is depicted in
Fig. 1. The coupling between the FVM and the PM is achieved via particle field estimation and interpolation
of mean flow quantities. Before explaining the details of the PM in Section 3.2, which also includes the cou-
pling issues, we describe the FVM.

3.1. Finite-volume method

The RANS equations (6) are solved on a multiblock grid using a FVM. The global block topology can be
unstructured, but each block consists of a structured grid. Coupling between adjacent blocks is achieved by
introducing ghost cells coinciding with the corresponding neighboring cells. For illustration, a single struc-
tured block is shown in Fig. 2. Note that it consists of arbitrarily shaped hexahedra (details of the geometry
description are explained in Section 3.2.2). The numerical fluxes, F, at a volume interface are computed with a
characteristic-based approximate Riemann solver [36]. Spatial discretization is second order accurate using a
MUSCL reconstruction [37] and the minmod limiter. In order to overcome the CFL restrictions of explicit
methods, especially for low Mach number flows, a fully implicit scheme is used for time integration. Each time
step, a nonlinear problem has to be solved, which is achieved by employing the Newton—Raphson method
within each block. After each Newton—-Raphson iteration the information in the ghost cells is updated.
Thereby, the vector of conservative variables, %, in volume (i,J,k) at the new time level n + 1 is computed as

At
+1 +1 +1 +1 +1 +1 +1
%Zj,k - @/711( - Ve {F?ﬂ/z‘/,k - F?—l/z,j,k + FZ/+1/2,k - F?j—l/Zik + F?,;‘,k+1/2 - Ftr",_/lk—l/Z}a (7)
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Fig. 1. Hybrid algorithm: flow chart.

Fig. 2. Multiblock paradigm: structured block with exemplary ghost cells.

where the numerical flux, F*"!, is approximated by the linearization
oF”
Fn+1 ~F" o %n+l _ %n . 8
o ) (8)

The superscripts n and n + 1 denote the old and new time levels, respectively. Note that the numerical flux F
also contains the area of the corresponding face of the hexahedron cell (dimension of F is dimension of %
times m*/s). ij,k denotes the volume of the cell, as defined later by Eq. (15). The Jacobian, 0F"/0%, is com-
puted analytically (Ist order) or numerically (1st or 2nd order). For the numerical computation of the Jaco-
bian, the approximation
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oF" F(U+AU)—F(U) (9)
ou, "~ AUy

is used, where A% is a small perturbation, where A% ;. = 0. Due to the ghost cells, block interfaces or bound-
aries require no special treatment, except that the values in the ghost cells need to be updated after each iter-
ation (Schwarz overlap technique). However, to achieve consistency, one has to ensure that each ghost cell is
geometrically identical with its corresponding cell in the neighbor block. The implicit solver was validated and
compared with an explicit Runge-Kutta scheme. It was confirmed that the implicit solver allows for much
larger time steps (several orders of magnitude), especially for test cases with small Mach numbers or highly
heterogeneous grids. According to our experience it makes no difference whether the Jacobian is computed
analytically or numerically (Eq. (9)). The numerical version, however, is much easier to implement and more
flexible, e.g. it is straightforward to incorporate viscous fluxes or to extend the scheme to higher order. More-
over, it was found that approximately the same convergence rate is achieved, if the higher order extension is
treated explicitly. This results in linear systems with smaller bandwidth, which can be solved more efficiently.
For small problems, we use an efficient direct LU decomposition solver, which makes use of the band-struc-
ture of the matrix. For larger problems, a preconditioned iterative solver is applied. The terms on the right-
hand side of Eq. (6) are extracted from the particle fields; more will be explained in Section 3.2. The fluxes have
to be interpolated from the cell nodes to the face-midpoints. Here, the average value of the four nodes adjacent
to a cell interface is taken to approximate the correct flux across an interface. To impose boundary conditions,
the same ghost cell technique as for the block coupling is employed. At inflow boundaries, % is enforced for all
components but the total energy per unit volume, pE;, which is extrapolated from the computational domain.
At outflow boundaries, all components of % except pE,, which is enforced, are extrapolated from the compu-
tational domain to the ghost cells. Slip boundary conditions are imposed by reflecting the velocity vector at the
boundary face. It is important to note that the ghost cell geometry is an exact mirror of its adjacent cell inside
the computational domain, otherwise the flux solver does not guarantee that the mass flux across the bound-
ary is zero. Note that it is also possible to deal with more complex boundary conditions using the same ghost
cell approach.

3.2. Lagrangian particle method

The PM and its coupling with the FVM are the most delicate aspects of the algorithm. In this section, we
first describe the modeling issues on the particle side. Then, the algorithmic details of the PM are addressed,
which includes particle management in complex 3D multiblock grids, extraction of mean quantities from the
particle field, and interpolation of data to particle locations. Moreover, critical aspects with respect to com-
putational efficiency are discussed.

3.2.1. Modeled PDF transport equation

Eq. (4) is solved using a Lagrangian particle method. An ensemble of notional particles represents the mass
density function, 4. Each particle carries information about its position, x*, weight, m”*, Favre-fluctuating
velocity, u”, turbulence frequency, w*, and composition, ¢*. The superscript * denotes a notional particle prop-
erty. In physical space, the particle evolution is described by

dx;(¢) = (U, +u) dt (10)

and in fluctuating velocity space, particle evolution is governed by Eq. (2). The first two terms on the right-
hand side of Eq. (2) are in closed form, but the effect of fluctuating pressure and fluctuating viscous stresses
needs to be modeled. Therefore, as mentioned earlier, we here employ the SLM [4], which leads to the stochas-
tic differential equation

1 op)uu; L oU; 1 3 . !

for the fluctuating particle velocity. Note that d W(t) is a Wiener process, where d W(1) = Wt + dt) — W) is
normally distributed with (dWy(t)) =0 and (dW(1)dW|t)) = dtJ;.

du;(t) =
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To compute the conditional turbulence frequency,
(pro‘|o > o)
(p) ’
a further stochastic differential equation, which is explained in Ref. [29], is solved for w™.
If reacting flow is considered, which is not discussed in this paper, also molecular mixing and chemical

source terms have to be computed. Those two terms are responsible for the particle evolution in composition
space.

Q=C, (12)

3.2.2. Particle management, interpolation, and estimation

For a fast solution algorithm, efficient particle management within the 3D multiblock framework is crucial.
First, the particles have to be assigned to a cell in the multiblock grid. Second, mean quantities, e.g. Reynolds
stresses, have to be extracted from the ensemble of particles and stored at the grid nodes. Such mean quantities
are used for three purposes: to close the particle evolution equations, to close the RANS equations solved by
the FVM, and to present results. In order to access mean quantities (including gradients and fields computed
by the FVM) in the particle evolution equations, the data have to be interpolated from the grid nodes to the
particle positions.

Next, we describe how the mean particle data are extracted at the grid nodes and how data are interpolated
from the grid nodes to the particle locations.

3.2.2.1. Geometry definition. Each hexahedron grid cell, €, is defined by eight nodes, x; (i € {0,...,7}), which
determine the cell’s midpoint (Fig. 3a)

and the midpoint of a cell face Y; (Fig. 3b)

1 1<
X7 :Z Z X; :Z ZXU? (14)

where x;; are the nodes of face Y;. Each hexahedron cell % is subdivided into six pyramids, one for each face,
with the common node x”. Finally, each pyramid is divided into four tetrahedra, I';; (i € {0,...,5} and
j€1{0,...,3}), with the common nodes x”" and x'/, where i is the index of the pyramid and j the index of
the tetrahedron. The cell volume is defined by

ve=>"

5 3
i=0 ;=0

yr, (15)

where the volume of the tetrahedron I';; is

(a) (b) ()

Fig. 3. Geometrical definitions: (a) notation of nodes in %, (b) pyramid at face Y, consisting of tetrahedra I'; ;,j € {0,...,3}, and
(c) isolated tetrahedron I' 3.
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Vi = 2 (X7 = Xiy) X (X7 = Ximodyj41))) - (X" = XT7). (16)

Note that mody(+) is the modulo function. The face normal vectors N; of Y; are computed as

3
N; = Z - X (Xij = Ximod,(j+1)) * ] (17)
2‘“ § =0
with
n, = (Xi,O — X[’Q) X (X,',l — Xl,3)' (18)

Note that the absolute value of the normal vector n; corresponds to the area of face T,.

3.2.2.2. Definition of basis functions. Within each tetrahedron, I';;, we introduce a piecewise tri-linear basis

functions, wi(¢&), for each node x; € ¥. These basis functions fulfill

wi(é=x¢)=0u, Lk=0,...7 (19)
and

wi(é=x")=0.125, [1=0,...,7. (20)

Here, £ denotes the position within the cell. The basis functions have compact support, i.e. w; (&) =0 VEZ E
and

7

> owi(e) =1 Vées. (21)

=0
The gradient Vw/(&) is constant within I';; and satisfies

(Ximods (i) — X™) - Vw; = wi (& = Ximod,(jn)) — 0.125, k=0,1 (22)
and

(x" —x™) - Vw; = 0.125. (23)
The latter equation implies that the basis functions have the value 0.25 at the face midpoints adjacent to the

node where their value is one.

3.2.2.3. Extraction from particles to nodes. The weighted particle contribution of the quantity ™ at node x; is

@[ _ Z m*W[(X*)T*, (24)
V particles
where
wi(x") = 0.125 + Vwy(x7) - (X* — x") (25)

is the corresponding weight.

3.2.2.4. Interpolation from nodes to particle locations. To interpolate a quantity @ from the cell corners to the
particle position, x*, the same weights as for the extraction are used. The interpolation then reads

7
= Z @]W}(X*), (26)
=0
where @, denotes the value of @ at the node x;. Similarly, the gradient V@ can be computed as

=0
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Note that the geometrical data, x™, xT, N and Vw,, have to be computed only once, but for each particle it has
to be determined in which tetrahedron it is located. This procedure is described in Appendix B.

3.2.3. Extraction of particle statistics
An estimate of ¥ at node x; is obtained by

_ oy
p, - !

= 28
! M[ ) ( )
where
M= > mw(x). (29)
V particles
In addition, some particle data are represented as an average over a grid cell 4, 4, i.e. by
. W,
l{’,‘ ik — L. 30
M ik (30)
with
QIU’]{ = Z m* '}I* (31)
V particles€% j
and
Mi‘j,k = Z m*. (32)

V particles€® j x

Table 2 shows the quantities which have to be extracted and indicates where they are used. For the extraction
of statistical particle data at the nodes of a multiblock grid it is important to maintain consistency across block
boundaries. Therefore, for nodes at block interfaces, particles from the neighboring blocks have to be taken
into account. In the current implementation this is considered for extraction at block interfaces, vertices and
edges and it is ensured that no discontinuities in the extracted fields at block-interface nodes can occur (note
that extracted quantities at such nodes are stored separately for each block). This is important for stability
reasons.

At symmetry boundaries, one has to be careful with the boundary conditions for the Reynolds stresses, e.g.
in the case of a normal vector pointing in the direction of x;, uju, has to be exactly zero at a symmetry plane.
This cannot be obtained, if particles are extracted only from one side of the symmetry plane. Therefore, ghost
particles are introduced for each computational particle contributing to the extraction at this boundary
(Fig. 4). Note that the ghost particles are not added to the particle cloud; they are only used during the extrac-
tion procedure. The velocity of the ghost particle is mirrored at the block boundary. All other ghost particle
quantities, such as mass, m”*, composition vector, ¢*, and turbulence frequency, w”, are identical to those of the
corresponding computational particle.

Table 2

Extracted statistics from the particles

Quantity Description Location Used by

il Reynolds stress Grid node FVM, PM

u;h!! Turbulence enthalpy flux Grid node FVM

D) Turbulence frequency Grid node PM

Q Conditional turbulence frequency Grid node PM

u,-ﬂ_ﬂk Triple correlation Grid node FVM

(pO) Source term Cell center FVM

Pp Particle number density Cell center Position correction
u; Mean fluctuating velocity Grid node Velocity correction

{c) Composition vector Grid node PM
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physical symmetry boundary

@ particle

O ghost particle
ghost cells

<& extraction to node

Fig. 4. Particle extraction at symmetry boundaries.

However, if there exist multiple symmetry planes adjacent to a node (at block edges or corners), it is not
possible to obtain the desired symmetry by introducing a separate ghost particle for each symmetry plane.
In such cases, only one ghost particle with a velocity reflected at the edge or corner is introduced (Fig. 4).

3.2.4. Particle time integration. sub-time stepping

Particle transport in physical space is governed by Eq. (10), where a CFL criterion has to be fulfilled for
accuracy reason. Without special treatment, however, fast particles in small cells can impose a severe time step
size limitation for all particles, which clearly has a negative impact on the efficiency of the overall solution
algorithm. This is a concern in particular for grids with local refinement. To overcome this problem, a sub-
time stepping algorithm similar to previously used schemes [35] was devised and implemented for multiblock
grids. Eq. (10) is integrated for each particle using sub-time steps fulfilling the local CFL criterion. First, the
global time step Afpy is defined and then each particle is evolved by a consistent number of sub-time steps

. Ax;
Atpy = CFLml_m <U,-(X*) n M?‘)' (33)
The maximum extension of the cell in which the particle is located is denoted by Ax. Typically, we use
CFL =~ 0.5. Each sub-time step, the mean quantities needed in the stochastic differential equations are inter-
polated to the particle positions (Egs. (26) and (27)). The extraction of particle data is performed after each
global time step. Note that sub-time stepping requires special care at the inflow boundary (see Section 3.2.5).

To achieve second-order accuracy for the time integration, the midpoint rule is applied [38]. The first half-
step reads

1
*”+2

Y o
X" =x" +%(U”(X*)+u¥)- (34)

n_l . . ..
Then, u*""' is computed at the estimated mid-point, x* >, and is used to compute the new particle position

" 0 ~ n+d 1 n nt
X" =x +At§,M(U”(x* 2) —|—§(u* +u’ l)), (35)

where the superscripts 7 and n + 1 denote the old and new time levels, respectively. Interpolation of the mean
velocity, U, is discussed in Appendix A.

3.2.5. Boundary conditions

Currently, four types of boundary conditions are considered for the particles, i.e. slip wall, symmetry
boundary, inflow and outflow. If a particle crosses a symmetry or a slip wall boundarys, it is reflected. The only
difference between symmetry and slip wall boundary condition is that for the slip wall no ghost particles for
extraction are created (see Section 3.2.3). In Fig. 5, reflection is illustrated in a sketch. It is guaranteed that the
numerical particle flux across the boundary is exactly zero. The reflection of a particle implies mirroring its
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physical symmetry boundary

ghost cell

Fig. 5. Particle boundary condition: reflection at symmetry boundaries.

new position, x*"*!, velocity vector, u*, and origin, x*", at the interface Y after a sub-time step. Note that near

edges a particle may be reflected several times. At the inflow boundary, the first plane of ghost cells is popu-
lated with particles, which have appropriate properties. If particle sub-time stepping is applied (see Section
3.2.4), it has to be guaranteed that a new particle is generated for each particle moving from a ghost cell into
the computational domain. The position of the new particle is chosen randomly within the ghost cell. If a par-
ticle crosses an outflow boundary, it is removed. At the end of each time step, all ghost cell particles are col-
lected and the inflow ghost cells are repopulated.

3.2.6. Particle number control

In order to keep the statistical and the deterministic bias errors small, a sufficiently large number of particles
is required in each volume. On the other hand, however, the total number of particles used for a computation
is tightly related to the computational cost. Therefore, for efficiency reason, it is important to control the par-
ticle number density. While increasing the number of particles is simply achieved by splitting heavy particles
into lighter ones (this can be done without violating the conservation laws), reducing the particle number in a
volume is not straight forward. It is not possible to fulfill all, mass, momentum and kinetic energy budget, in
single events. In the present algorithm, first the two lightest particles in a cell are selected. Then, by random
choice, one is eliminated. The weight of the eliminated particle is added to the other one to conserve mass.
Even though conservation of kinetic energy and momentum may be violated in single events, this elimination
procedure satisfies the conservation laws statistically.

It can be demonstrated that the expectation of any function Q(®"), where @ is the particle property vector,
is preserved by this elimination procedure by considering the conditional expectation of a pair of particles

O(#)],,,, = LIPITIDI) _ Wi 6(g)],) + D)) (36)

3 k - k * £ 3
(Wi +ws) wi +w, ! Wi +w; 2

.
W,

where w} and w} are the weights of the two particles. Note that the expression (36) is based on fixed weights w}
and wj;. The probability that particle one (two) is eliminated is p (¢ =1 — p). The expectation after the elim-
ination is

k * k k
W, + W Wi + W,

E=p (Q(@)],;) +4 (O(@)],:)- (37)

Wi +w; : Wi +w; !

If p = w3 /(w; + w5) and consistently ¢ = wi/(w} + w}), then E is identical to the conditional expectation given
by Eq. (36). This proves that in the mean the elimination procedure preserves any (since Q is general) statistics
derived from the particle properties. Moreover, note that the total mass is conserved exactly. The motivation
for taking the lightest particles is simply to account for the stronger statistical representation by the heavy
particles.

Note that with controlled splitting and elimination as described above the efficiency of the overall particle
algorithms can be improved dramatically.
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3.3. Coupling and solution strategy

One of the major challenges in the development of the current solution algorithm was a robust and efficient
coupling strategy. Information has to be exchanged between the two components of the code, i.e. the mean
velocity from the finite-volume scheme to the particle method and statistical moments like the turbulent fluxes
and the energy source term vice versa. Essentially there are two coupling aspects. First, the convergence rate is
significantly influenced by the coupling method, and second, inappropriate coupling can lead to instabilities.
Next, the most important coupling issues are explained and discussed.

3.3.1. Moving time averaging

In order to reduce the statistical and the deterministic bias errors [39] of the extracted data like Reynolds
stresses, we employ exponentially weighted moving time averaging. Note that this is only admissible, if statis-
tically stationary solutions are considered. For example, let QA?’;“ be some extracted data at node x; and time
level n + 1. Employing exponentially weighted moving time averaging leads to the quantity

P =1, @ 4 (1 — vg) D", (38)

which can be used to replace éﬁ’,’“ in the equations. The main advantage is that @"*! is much smoother that
@3’,’“. As a results, statistical and bias errors are reduced and the coupling between particle and finite-volume
methods becomes more robust. Note that the memory factor, v, has to be between zero and one and deter-
mines the level of smoothening.

3.3.2. Algebraic proxy model

In order to take full advantage of the implicit finite-volume scheme and the particle sub-time stepping strat-
egy, it is important to start with a reasonable initial condition. This can be achieved by initially employing a
simple algebraic turbulence model with an ad hoc and case dependent value for the turbulent viscosity. During
this phase, the particles evolve as usual, but their influence on the finite-volume solver is ignored or damped.
For example, the Reynolds stresses in Eq. (6) are replaced by

e oU;, oU; 2 - __
(pyuu; = —Vvrsh, {(ax-l- 6le) - §(V . U)5,-j} + (1 — vrs){p)uu;, (39)
J i

where y 1s the turbulent viscosity and vgg € [0, 1]1s a blending factor. The computation is started with vgg = 1
using large time steps. Like that, full advantage of the implicit solver is taken. Once an approximately station-
ary solution is obtained, vgrg is slowly relaxed to zero, e.g. as

Vs = V(l)zs o, (40)

where n is the time level and o, = 0.99. Finally, after a sufficient number of time steps, all unclosed terms in the
RANS equations come from the particle statistics. According to our experience, the use of such an algebraic
turbulence model during the initial phase of a PDF simulation can make a big difference, in particular for geo-
metrically complex simulations. Note that this idea can be improved, e.g. by replacing the algebraic model by
a Reynolds stress model.

3.3.3. Multigrid strategy

In order to obtain grid converged solutions, one has to perform computations on grids with different res-
olution. For a grid with N cells in each direction, the cost of the PM is proportional to N* (employing a con-
stant number of particles per cell). The cost of the FVM is proportional to N'7* where f depends on the
linear solver used for the matrix inversion. For more efficient computations on very fine grids, we devised
and implemented a multigrid algorithm. The strategy is to start with a simulation on a coarse grid and to pro-
ject the solution to subsequently finer grids. Properties of this re-gridding algorithm are that
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a multiblock grid solution can be projected onto a new grid with arbitrary resolution, while grid curvature
is retained,

the new grid is generated by interpolation from the old grid,

all finite-volume and particle data are interpolated onto the new grid,

linear or cubic spline interpolation can be used for interpolation,

the stretching factors of the original grid are retained within each block,

original block connectivities are honored for arbitrary topologies,

all particles are redistributed, and

local or global refinement is possible.

The recursive algorithm can be outlined as follows:

for each block do
for each logical direction of the block do
if necessary to re-grid

- parameterize grid density function

- interpolate cell centered data to nodes

- parameterize node based data

- generate new grid by distributing the desired
number of nodes using parameterized grid density function

- interpolate node based data to inner nodes

- interpolate node based data back to cell centers
by node averaging

end
end
end

Various interpolation kernels, e.g. linear or cubic splines, can be used. Projection is applied to node-based
quantities. First, the grid lines are parameterized, and the new grid is created along these grid lines, leaving the
first and last node of an interpolation direction untouched, see Fig. 6. Then, the quantities are interpolated
similarly. Cell centered quantities @ are interpolated to node x, by averaging over its adjacent cells %}
(k €10,7), i.e.

/1% — x| "
Sicol/ X = x|

where x/ is the mid-point of cell 4. After projection, interpolation to the cell centers is achieved by averaging

over the cell nodes. In a last step, the particles are reassigned to the new grid cells and particle number control

(see Section 3.2.6) ensures that the particle number is within the defined limits when the simulation is restarted

with the new grid.

n

3.4. Consistency

While the JPDF method is fully consistent at the level of the governing equations, this is not always guar-
anteed numerically. In this section, two correction schemes dealing with consistency between particle and
finite-volume data are presented.

3.4.1. Particle position correction

In the hybrid code, the mean fluid density is computed twice, i.e. {p) by the finite-volume scheme and the
particle number density, p,,, by the particle method. For a robust, stable and accurate solution algorithm it is
essential that these two fields are consistent. This is guaranteed at the analytical level, but in general not
numerically. Several methods have been proposed to numerically enforce this consistency, e.g. by Zhang
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— Block boundary .-~ ’
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Fig. 6. Multigrid projection: The gridlines between the nodes are parameterized by, e.g., cubic splines and the new grid is generated
according to the desired resolution along these lines.

and Haworth [32] or Muradoglu et al. [40]. Here we devise a simpler particle position correction scheme based

on a particle drift flux to reduce [(p) — p,|. Given are the mass discrepancies dM; and dM; in two adjacent cells,
where

am; = (p, — (p)), V. (42)

The volume of cell i is denoted by ¥?. Now the correction flux

Y I At (aM; — dM ) (43)
across the interface between the two cells is computed and added to the fluxes obtained from the finite volume
solver, which are also defined at the cell interfaces. The interpolation to the particle positions is then obtained
by Eq. (A.4), where the velocities u”" at the cell interfaces in Eq. (A.2) are now obtained from the sum of the
fluxes from the FVM and the position correction. Despite its simplicity, in all our studies this correction pro-
cedure proved to be very effective and robust.
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Fig. 7. Validation: sketch of the bluff body flow test case.
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3.4.2. Particle velocity correction

Analytically, the stochastic differential equation (11) guarantees that the expectation of the fluctuating par-
ticle velocity, u®, is always zero everywhere, if it was zero initially. However, numerically this is not automat-
ically fulfilled. To enforce that, first the fluctuating velocity is extracted at each grid node. By employing time
averaging (Eq. (38)) using the memory factor vgy¢ and subsequent interpolation to the particle position, one
obtains the vector ug,. which is then used to correct the particle velocity as

™

8
o o <+ [Ye] w o o < [fe} 9] o
o o (=] O o — — T, — — ™~
o o [e] o o o (=] (=] (=] (=]

@ grid 1 1
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o o~ < w0 w (=] o~ <+ w0 W (=]

o o D_ o o — - = — - N

o (=] o o (=) o Q (=] o o (=)
(o) grid 3 zy

Fig. 8. Validation: three different grids with (a) one block (1024 cells), (b) three blocks (1456 cells), and (c) six blocks (1008 cells); different
blocks are visualized by different colors. This figure appears in color in the online version of this paper.
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* _ * _
corrected — Wuncorrected — Wluet -

u (44)
This simple velocity correction technique is applied after each time step and according to our experience it
works very well, i.e. u; could always be reduced to insignificant values.

4. Results

The entire implementation of the new JPDF solution algorithm, which is based on our Lagrangian/
Eulerian multiblock simulation kit (LEMBSK), was validated with a number of test cases using different
multiblock grids. In the following sections, comparisons with the established hybrid code pdf2dfv [29] for a
bluff-body stabilized flow are presented. The various algorithmic components and their influence on the over-
all performance are analyzed. Moreover, it is demonstrated that the new JPDF solution algorithm can deal
with complex geometries, which is crucial for most practical applications. Note that, if not mentioned other-
wise, SI units are used.

T

(a)

To

(b)

o)

(c)

Fig. 9. Validation with grid 1: (a) Uy, (b) U, (c) u1us; the contour increment in is (a) 20, in (b) 1, and in (c) 10. This figure appears in color
in the online version of this paper.
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Fig. 10. Validation against pdf2dfv: comparison for various quantities at three downstream locations; LEMBSK results for grid 1 — and
reference results by pdf2dfv ———.
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4.1. Description of the bluff-body test case

Bluff-body stabilized flows have extensively been studied experimentally and theoretically [41-46,13] and
various data-sets are available for validation. Here, the test case is described only briefly; for details and exper-
imental data we refer to [41,46].

In Fig. 7, a sketch of the axi-symmetric test case with the computational domain is shown. For simplicity,
however, we used an equivalent, but plane configuration and consider non-reacting flow. The jet and the bluff-
body diameters are 0.0036 and 0.05, respectively. Both, jet and co-flow consist of air with constant density.
Bulk velocities of jet and co-flow are 61 and 20. At the inflow boundary, profiles of the mean and rms veloc-
ities are imposed [13] and at the centerline and far-field boundaries, symmetry boundary conditions are
applied (see Fig. 7). In the bluff-body region, slip-wall boundary conditions and at the right boundary, outflow
conditions are employed (Sections 3.2.3 and 3.1).

4.2. Algorithm validation

In this section, it is shown for three different grids (Fig. 8) that LEMBSK and pdf2dfv solutions are in good
agreement. Note that, since the topic of the paper is the solution algorithm and not turbulence modeling, all
comparative simulations were performed with the same models, boundary conditions and grids. Finally, in
Section 4.4, it is demonstrated that LEMBSK is capable of handling non-orthogonal, complex multiblock
grids.

In Fig. 9, the single block (32 x 32 grid) LEM BSK solution is depicted, i.e. the mean velocity components, U,
and Uz, and the shear stress uju,. In Fig. 10, LEMBSK and pdf2dfv are compared, i.e. profiles of Ui, Us,
uty, Uiy, usuz and wuu, are shown at three different down-stream locations. In general, there exists very good
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Fig. 12. Validation: residual for grid 1 —, grid 2 ——, and grid 3 - --

Table 3
Algorithm efficiency: implicit solver and particle number control (runs A.i) and multigrid algorithm (runs B.i)
FVM At No. cells Particle number control CPU-time/At (%) Re-gridding
A.l expl. 1024 No 100 No
A2 impl. 4%107* 1024 No 14 No
A3 impl. 4%x107* 1024 Yes 7 No
B.1 impl. 5%107° 4032 Yes 100 No
B.2 impl. 2% 1074 252 Yes 2 No
B.3 impl. 1x107* 1008 Yes 9 Yes (from B.2)
B4 impl. 5%107° 4032 Yes 100 Yes (from B.3)

B.5 impl. 1x107* 1008 Yes 9 No




78 B. Rembold, P. Jenny | Journal of Computational Physics 220 (2006) 59-87

agreement, except in the case of U,, where a discrepancy can be observed. This is due to first order treatment of
the boundary conditions in pdf2dfv, which are treated second order in LEMBSK.

Fig. 11 shows the same profiles for the three different grids. Despite the fact that all grids are rather coarse
and only si